horror/thirdparty/ode-0.16.5/tests/joints/slider.cpp

1333 lines
41 KiB
C++
Raw Normal View History

2024-06-10 17:48:14 +08:00
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
//234567890123456789012345678901234567890123456789012345678901234567890123456789
// 1 2 3 4 5 6 7
////////////////////////////////////////////////////////////////////////////////
// This file creates unit tests for some of the functions found in:
// ode/src/joinst/slider.cpp
//
//
////////////////////////////////////////////////////////////////////////////////
#include <UnitTest++.h>
#include <ode/ode.h>
#include "../../ode/src/config.h"
#include "../../ode/src/joints/slider.h"
SUITE (TestdxJointSlider)
{
struct dxJointSlider_Fixture_1
{
dxJointSlider_Fixture_1()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, -1, 0);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 1, 0);
jId = dJointCreateSlider (wId, 0);
joint = (dxJointSlider*) jId;
dJointAttach (jId, bId1, bId2);
}
~dxJointSlider_Fixture_1()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
dxJointSlider* joint;
};
TEST_FIXTURE (dxJointSlider_Fixture_1, test_dJointSetSlider)
{
// the 2 bodies are align
dJointSetSliderAxis (jId, 1, 0, 0);
CHECK_CLOSE (joint->qrel[0], 1.0, 1e-4);
CHECK_CLOSE (joint->qrel[1], 0.0, 1e-4);
CHECK_CLOSE (joint->qrel[2], 0.0, 1e-4);
CHECK_CLOSE (joint->qrel[3], 0.0, 1e-4);
dMatrix3 R;
// Rotate 2nd body 90deg around X
dBodySetPosition (bId2, 0, 0, 1);
dRFromAxisAndAngle (R, 1, 0, 0, M_PI/2.0);
dBodySetRotation (bId2, R);
dJointSetSliderAxis (jId, 1, 0 ,0);
CHECK_CLOSE (joint->qrel[0], 0.70710678118654757, 1e-4);
CHECK_CLOSE (joint->qrel[1], 0.70710678118654757, 1e-4);
CHECK_CLOSE (joint->qrel[2], 0.0, 1e-4);
CHECK_CLOSE (joint->qrel[3], 0.0, 1e-4);
// Rotate 2nd body -90deg around X
dBodySetPosition (bId2, 0, 0, -1);
dRFromAxisAndAngle (R, 1, 0, 0, -M_PI/2.0);
dBodySetRotation (bId2, R);
dJointSetSliderAxis (jId, 1, 0 ,0);
CHECK_CLOSE (joint->qrel[0], 0.70710678118654757, 1e-4);
CHECK_CLOSE (joint->qrel[1], -0.70710678118654757, 1e-4);
CHECK_CLOSE (joint->qrel[2], 0.0, 1e-4);
CHECK_CLOSE (joint->qrel[3], 0.0, 1e-4);
// Rotate 2nd body 90deg around Z
dBodySetPosition (bId2, 0, 1, 0);
dRFromAxisAndAngle (R, 0, 0, 1, M_PI/2.0);
dBodySetRotation (bId2, R);
dJointSetSliderAxis (jId, 1, 0 ,0);
CHECK_CLOSE (joint->qrel[0], 0.70710678118654757, 1e-4);
CHECK_CLOSE (joint->qrel[1], 0.0, 1e-4);
CHECK_CLOSE (joint->qrel[2], 0.0, 1e-4);
CHECK_CLOSE (joint->qrel[3], 0.70710678118654757, 1e-4);
// Rotate 2nd body 45deg around Y
dBodySetPosition (bId2, 0, 1, 0);
dRFromAxisAndAngle (R, 0, 1, 0, M_PI/4.0);
dBodySetRotation (bId2, R);
dJointSetSliderAxis (jId, 1, 0 ,0);
CHECK_CLOSE (joint->qrel[0], 0.92387953251128674, 1e-4);
CHECK_CLOSE (joint->qrel[1], 0.0, 1e-4);
CHECK_CLOSE (joint->qrel[2], 0.38268343236508984, 1e-4);
CHECK_CLOSE (joint->qrel[3], 0.0, 1e-4);
// Rotate in a strange manner
// Both bodies at origin
dRFromEulerAngles (R, REAL(0.23), REAL(3.1), REAL(-0.73));
dBodySetPosition (bId1, 0, 0, 0);
dBodySetRotation (bId1, R);
dRFromEulerAngles (R, REAL(-0.57), REAL(1.49), REAL(0.81));
dBodySetPosition (bId2, 0, 0, 0);
dBodySetRotation (bId2, R);
dJointSetSliderAxis (jId, 1, 0 ,0);
CHECK_CLOSE (joint->qrel[0], -0.25526036263124319, 1e-4);
CHECK_CLOSE (joint->qrel[1], 0.28434861188441968, 1e-4);
CHECK_CLOSE (joint->qrel[2], -0.65308047160141625, 1e-4);
CHECK_CLOSE (joint->qrel[3], 0.65381489108282143, 1e-4);
}
// The 2 bodies are positioned at (0, 0, 0) with no rotation
// The joint is a Slider Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X
{
Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreateSlider (wId, 0);
joint = (dxJointSlider*) jId;
dJointAttach (jId, bId1, bId2);
dJointSetSliderAxis(jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
dxJointSlider* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X::axis = {1, 0, 0};
const dReal Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X::offset = REAL(3.1);
// Move 1st body offset unit in the X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderAxisOffset_B1_3Unit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId1, offset, 0, 0);
CHECK_CLOSE (offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
//
// Start with a Offset of -offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderAxisOffset_B1_Minus_3Unit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId1, -offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 2nd body offset unit in the X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderAxisOffset_B2_3Unit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId2, offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 2nd body offset unit in the opposite X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
//
// Start with a Offset of -offset unit
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderAxisOffset_B2_Minus_3Unit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId2, -offset, 0, 0);
CHECK_CLOSE (offset, dJointGetSliderPosition(jId), 1e-4);
}
// The 2 bodies are positioned at (0, 0, 0) with no rotation
// The joint is a Slider Joint
// Axis is the opposite of the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X
{
Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreateSlider (wId, 0);
joint = (dxJointSlider*) jId;
dJointAttach (jId, bId1, bId2);
dJointSetSliderAxis(jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dBodyID bId2;
dJointID jId;
dxJointSlider* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X::axis = {-1, 0, 0};
const dReal Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X::offset = REAL(3.1);
// Move 1st body offset unit in the X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderAxisOffset_B1_3Unit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId1, offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderAxisOffset_B1_Minus_3Unit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId1, -offset, 0, 0);
CHECK_CLOSE (offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 2nd body offset unit in the X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
//
// Start with a Offset of offset unit
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderAxisOffset_B2_3Unit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId2, offset, 0, 0);
CHECK_CLOSE (offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 2nd body offset unit in the opposite X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
//
// Start with a Offset of -offset unit
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderAxisOffset_B2_Minus_3Unit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId2, -offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetSliderPosition(jId), 1e-4);
}
// Only body 1
// The body is positioned at (0, 0, 0) with no rotation
// The joint is a Slider Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X
{
Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
jId = dJointCreateSlider (wId, 0);
joint = (dxJointSlider*) jId;
dJointAttach (jId, bId1, NULL);
dJointSetSliderAxis(jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dJointID jId;
dxJointSlider* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X::axis = {1, 0, 0};
const dReal Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X::offset = REAL(3.1);
// Move 1st body offset unit in the X direction
//
// X-------> X---------> Axis -->
// B1 => B1
//
TEST_FIXTURE (Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X,
test_dJointSetSliderAxisOffset_B1_OffsetUnit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId1, offset, 0, 0);
CHECK_CLOSE (offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> Axis -->
// B1 => B1
//
TEST_FIXTURE (Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X,
test_dJointSetSliderAxisOffset_B1_Minus_OffsetUnit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId1, -offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetSliderPosition(jId), 1e-4);
}
// Only body 1
// The body is positioned at (0, 0, 0) with no rotation
// The joint is a Slider Joint
// Axis is in the oppsite X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X
{
Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X()
{
wId = dWorldCreate();
bId1 = dBodyCreate (wId);
dBodySetPosition (bId1, 0, 0, 0);
jId = dJointCreateSlider (wId, 0);
joint = (dxJointSlider*) jId;
dJointAttach (jId, bId1, NULL);
dJointSetSliderAxis(jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1;
dJointID jId;
dxJointSlider* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X::axis = {-1, 0, 0};
const dReal Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X::offset = REAL(3.1);
// Move 1st body offset unit in the X direction
//
// X-------> X---------> <--- Axis
// B1 => B1
//
TEST_FIXTURE (Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderAxisOffset_B1_OffsetUnit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId1, offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 1st body offset unit in the opposite X direction
//
// X-------> X---------> <--- Axis
// B1 => B1
//
TEST_FIXTURE (Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderAxisOffset_B1_Minus_OffsetUnit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId1, -offset, 0, 0);
CHECK_CLOSE (offset, dJointGetSliderPosition(jId), 1e-4);
}
// Only body 2
// The body is positioned at (0, 0, 0) with no rotation
// The joint is a Slider Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X
{
Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X()
{
wId = dWorldCreate();
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreateSlider (wId, 0);
joint = (dxJointSlider*) jId;
dJointAttach (jId, NULL, bId2);
dJointSetSliderAxis(jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId2;
dJointID jId;
dxJointSlider* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X::axis = {1, 0, 0};
const dReal Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X::offset = REAL(3.1);
// Move 2nd body offset unit in the X direction
//
// X-------> X---------> Axis -->
// B2 => B2
//
TEST_FIXTURE (Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderAxisOffset_B2_OffsetUnit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId2, offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 2nd body offset unit in the opposite X direction
//
// X-------> X---------> Axis -->
// B2 => B2
//
TEST_FIXTURE (Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderAxisOffset_B2_Minus_OffsetUnit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId2, -offset, 0, 0);
CHECK_CLOSE (offset, dJointGetSliderPosition(jId), 1e-4);
}
// Only body 2
// The body is positioned at (0, 0, 0) with no rotation
// The joint is a Slider Joint
// Axis is in the oppsite X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X
{
Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X()
{
wId = dWorldCreate();
bId2 = dBodyCreate (wId);
dBodySetPosition (bId2, 0, 0, 0);
jId = dJointCreateSlider (wId, 0);
joint = (dxJointSlider*) jId;
dJointAttach (jId, NULL, bId2);
dJointSetSliderAxis(jId, axis[0], axis[1], axis[2]);
}
~Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId2;
dJointID jId;
dxJointSlider* joint;
static const dVector3 axis;
static const dReal offset;
};
const dVector3 Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X::axis = {-1, 0, 0};
const dReal Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X::offset = REAL(3.1);
// Move 2nd body offset unit in the X direction
//
// X-------> X---------> <--- Axis
// B2 => B2
//
TEST_FIXTURE (Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderAxisOffset_B2_OffsetUnit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId2, offset, 0, 0);
CHECK_CLOSE (offset, dJointGetSliderPosition(jId), 1e-4);
}
// Move 2nd body offset unit in the opposite X direction
//
// X-------> X---------> <--- Axis
// B2 => B2
//
TEST_FIXTURE (Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderAxisOffset_B2_Minus_OffsetUnit)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
dBodySetPosition(bId2, -offset, 0, 0);
CHECK_CLOSE (-offset, dJointGetSliderPosition(jId), 1e-4);
}
// ==========================================================================
// Test Position Rate
// ==========================================================================
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> Axis -->
// B1 F-> => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderPositionRate_Force_Along_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId1, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> Axis -->
// B1 <-F => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderPositionRate_Force_Inverse_of_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId1, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> <-- Axis
// B1 F-> => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderPositionRate_Force_Inverse_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId1, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> <-- Axis
// B1 <-F => B1
// B2 B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderPositionRate_Force_Along_of_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId1, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 F-> B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderPositionRate_Force_Along_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId2, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> Axis -->
// B1 => B1
// B2 <-F B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderPositionRate_Force_Inverse_of_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId2, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 F-> B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderPositionRate_Force_Inverse_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId2, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> <-- Axis
// B1 => B1
// B2 <-F B2
TEST_FIXTURE (Fixture_dxJointSlider_B1_and_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderPositionRate_Force_Along_of_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId2, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> Axis -->
// B1 F-> => B1
TEST_FIXTURE (Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X,
test_dJointSetSliderPositionRate_Force_Along_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId1, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> Axis -->
// B1 <-F => B1
TEST_FIXTURE (Fixture_dxJointSlider_B1_At_Zero_Axis_Along_X,
test_dJointSetSliderPositionRate_Force_Inverse_of_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId1, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the X direction that also is the axis direction
//
// X-------> X---------> <-- Axis
// B1 F-> => B1
TEST_FIXTURE (Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderPositionRate_Force_Inverse_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId1, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on 1st body in the inverse X direction
//
// X-------> X---------> <-- Axis
// B1 <-F => B1
TEST_FIXTURE (Fixture_dxJointSlider_B1_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderPositionRate_Force_Along_of_Axis_on_B1)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId1, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on body 2 in the X direction that also is the axis direction
//
// X-------> X---------> Axis -->
// B2 F-> B2
TEST_FIXTURE (Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderPositionRate_Force_Along_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId2, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on body 2 in the inverse X direction
//
// X-------> X---------> Axis -->
// B2 <-F B2
TEST_FIXTURE (Fixture_dxJointSlider_B2_At_Zero_Axis_Along_X,
test_dJointSetSliderPositionRate_Force_Inverse_of_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId2, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on body 2 in the X direction that also is the axis direction
//
// X-------> X---------> <-- Axis
// B2 F-> B2
TEST_FIXTURE (Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderPositionRate_Force_Inverse_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId2, 1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Apply force on body 2 in the inverse X direction
//
// X-------> X---------> <-- Axis
// B2 <-F B2
TEST_FIXTURE (Fixture_dxJointSlider_B2_At_Zero_Axis_Inverse_of_X,
test_dJointSetSliderPositionRate_Force_Along_of_Axis_on_B2)
{
CHECK_CLOSE (0.0, dJointGetSliderPosition(jId), 1e-4);
CHECK_CLOSE (0.0, dJointGetSliderPositionRate(jId), 1e-4);
dBodyAddForce(bId2, -1.0, 0, 0);
dWorldQuickStep (wId, 1.0);
CHECK_CLOSE (-1, dJointGetSliderPositionRate(jId), 1e-4);
}
// Create 2 bodies attached by a Slider joint
// Axis is along the X axis (Default value)
// Anchor at (0, 0, 0) (Default value)
//
// ^Y
// |
// |
// |
// |
// Body1 | Body2
// * Z-----*->x
struct dxJointSlider_Test_Initialization
{
dxJointSlider_Test_Initialization()
{
wId = dWorldCreate();
// Remove gravity to have the only force be the force of the joint
dWorldSetGravity(wId, 0,0,0);
for (int j=0; j<2; ++j)
{
bId[j][0] = dBodyCreate (wId);
dBodySetPosition (bId[j][0], -1, -2, -3);
bId[j][1] = dBodyCreate (wId);
dBodySetPosition (bId[j][1], 11, 22, 33);
dMatrix3 R;
dVector3 axis; // Random axis
axis[0] = REAL(0.53);
axis[1] = -REAL(0.71);
axis[2] = REAL(0.43);
dNormalize3(axis);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2],
REAL(0.47123)); // 27deg
dBodySetRotation (bId[j][0], R);
axis[0] = REAL(1.2);
axis[1] = REAL(0.87);
axis[2] = -REAL(0.33);
dNormalize3(axis);
dRFromAxisAndAngle (R, axis[0], axis[1], axis[2],
REAL(0.47123)); // 27deg
dBodySetRotation (bId[j][1], R);
jId[j] = dJointCreateSlider (wId, 0);
dJointAttach (jId[j], bId[j][0], bId[j][1]);
}
}
~dxJointSlider_Test_Initialization()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId[2][2];
dJointID jId[2];
};
// Test if setting a Slider joint with its default values
// will behave the same as a default Slider joint
TEST_FIXTURE (dxJointSlider_Test_Initialization,
test_Slider_Initialization)
{
using namespace std;
dVector3 axis;
dJointGetSliderAxis(jId[1], axis);
dJointSetSliderAxis(jId[1], axis[0], axis[1], axis[2]);
CHECK_CLOSE (dJointGetSliderPosition(jId[0]),
dJointGetSliderPosition(jId[1]), 1e-6);
for (int b=0; b<2; ++b)
{
// Compare body b of the first joint with its equivalent on the
// second joint
const dReal *qA = dBodyGetQuaternion(bId[0][b]);
const dReal *qB = dBodyGetQuaternion(bId[1][b]);
CHECK_CLOSE (qA[0], qB[0], 1e-6);
CHECK_CLOSE (qA[1], qB[1], 1e-6);
CHECK_CLOSE (qA[2], qB[2], 1e-6);
CHECK_CLOSE (qA[3], qB[3], 1e-6);
}
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
dWorldStep (wId,0.5);
for (int b=0; b<2; ++b)
{
// Compare body b of the first joint with its equivalent on the
// second joint
const dReal *qA = dBodyGetQuaternion(bId[0][b]);
const dReal *qB = dBodyGetQuaternion(bId[1][b]);
CHECK_CLOSE (qA[0], qB[0], 1e-6);
CHECK_CLOSE (qA[1], qB[1], 1e-6);
CHECK_CLOSE (qA[2], qB[2], 1e-6);
CHECK_CLOSE (qA[3], qB[3], 1e-6);
const dReal *posA = dBodyGetPosition(bId[0][b]);
const dReal *posB = dBodyGetPosition(bId[1][b]);
CHECK_CLOSE (posA[0], posB[0], 1e-6);
CHECK_CLOSE (posA[1], posB[1], 1e-6);
CHECK_CLOSE (posA[2], posB[2], 1e-6);
CHECK_CLOSE (posA[3], posB[3], 1e-6);
}
}
// Compare Only body 1 to 2 bodies with one fixed.
//
// The body are positioned at (0, 0, 0) with no rotation
// The joint is a Slider Joint
// Axis is along the X axis
// Anchor at (0, 0, 0)
struct Fixture_dxJointSlider_Compare_Body_At_Zero_Axis_Along_X
{
Fixture_dxJointSlider_Compare_Body_At_Zero_Axis_Along_X()
{
wId = dWorldCreate();
bId1_12 = dBodyCreate (wId);
dBodySetPosition (bId1_12, 0, 0, 0);
bId2_12 = dBodyCreate (wId);
dBodySetPosition (bId2_12, 0, 0, 0);
// The force will be added in the function since it is not
// always on the same body
jId_12 = dJointCreateSlider (wId, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
fixed = dJointCreateFixed (wId, 0);
bId = dBodyCreate (wId);
dBodySetPosition (bId, 0, 0, 0);
dBodyAddForce (bId, 4, 0, 0);
jId = dJointCreateSlider (wId, 0);
}
~Fixture_dxJointSlider_Compare_Body_At_Zero_Axis_Along_X()
{
dWorldDestroy (wId);
}
dWorldID wId;
dBodyID bId1_12;
dBodyID bId2_12;
dJointID jId_12; // Joint with 2 bodies
dJointID fixed;
dBodyID bId;
dJointID jId; // Joint with one body
};
// This test compares the result of a slider with 2 bodies where body 2 is
// fixed to the world to a slider with only one body at position 1.
//
// Test the limits [-1, 0.25] when only one body is attached to the joint
// using dJointAttach(jId, bId, 0);
//
TEST_FIXTURE(Fixture_dxJointSlider_Compare_Body_At_Zero_Axis_Along_X,
test_Limit_minus1_025_One_Body_on_left)
{
dBodyAddForce (bId1_12, 4, 0, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
dJointSetSliderParam(jId_12, dParamLoStop, -1);
dJointSetSliderParam(jId_12, dParamHiStop, 0.25);
dJointAttach(fixed, 0, bId2_12);
dJointSetFixed(fixed);
dJointAttach(jId, bId, 0);
dJointSetSliderParam(jId, dParamLoStop, -1);
dJointSetSliderParam(jId, dParamHiStop, 0.25);
for (int i=0; i<50; ++i)
dWorldStep(wId, 1.0);
const dReal *pos1_12 = dBodyGetPosition(bId1_12);
const dReal *pos = dBodyGetPosition(bId);
CHECK_CLOSE (pos[0], pos1_12[0], 1e-2);
CHECK_CLOSE (pos[1], pos1_12[1], 1e-2);
CHECK_CLOSE (pos[2], pos1_12[2], 1e-2);
}
// This test compares the result of a slider with 2 bodies where body 1 is
// fixed to the world to a slider with only one body at position 2.
//
// Test the limits [-1, 0.25] when only one body is attached to the joint
// using dJointAttach(jId, 0, bId);
//
TEST_FIXTURE(Fixture_dxJointSlider_Compare_Body_At_Zero_Axis_Along_X,
test_Limit_minus1_025_One_Body_on_right)
{
dBodyAddForce (bId2_12, 4, 0, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
dJointSetSliderParam(jId_12, dParamLoStop, -1);
dJointSetSliderParam(jId_12, dParamHiStop, 0.25);
dJointAttach(fixed, bId1_12, 0);
dJointSetFixed(fixed);
dJointAttach(jId, 0, bId);
dJointSetSliderParam(jId, dParamLoStop, -1);
dJointSetSliderParam(jId, dParamHiStop, 0.25);
for (int i=0; i<50; ++i)
{
dWorldStep(wId, 1.0);
}
const dReal *pos2_12 = dBodyGetPosition(bId2_12);
const dReal *pos = dBodyGetPosition(bId);
CHECK_CLOSE (pos[0], pos2_12[0], 1e-2);
CHECK_CLOSE (pos[1], pos2_12[1], 1e-2);
CHECK_CLOSE (pos[2], pos2_12[2], 1e-2);
}
// This test compares the result of a slider with 2 bodies where body 2 is
// fixed to the world to a slider with only one body at position 1.
//
// Test the limits [0, 0] when only one body is attached to the joint
// using dJointAttach(jId, bId, 0);
//
// The body should not move since their is no room between the two limits
//
TEST_FIXTURE(Fixture_dxJointSlider_Compare_Body_At_Zero_Axis_Along_X,
test_Limit_0_0_One_Body_on_left)
{
dBodyAddForce (bId1_12, 4, 0, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
dJointSetSliderParam(jId_12, dParamLoStop, 0);
dJointSetSliderParam(jId_12, dParamHiStop, 0);
dJointAttach(fixed, 0, bId2_12);
dJointSetFixed(fixed);
dJointAttach(jId, bId, 0);
dJointSetSliderParam(jId, dParamLoStop, 0);
dJointSetSliderParam(jId, dParamHiStop, 0);
for (int i=0; i<500; ++i)
dWorldStep(wId, 1.0);
const dReal *pos1_12 = dBodyGetPosition(bId1_12);
const dReal *pos = dBodyGetPosition(bId);
CHECK_CLOSE (pos[0], pos1_12[0], 1e-4);
CHECK_CLOSE (pos[1], pos1_12[1], 1e-4);
CHECK_CLOSE (pos[2], pos1_12[2], 1e-4);
CHECK_CLOSE (pos[0], 0, 1e-4);
CHECK_CLOSE (pos[1], 0, 1e-4);
CHECK_CLOSE (pos[2], 0, 1e-4);
}
// This test compares the result of a slider with 2 bodies where body 1 is
// fixed to the world to a slider with only one body at position 2.
//
// Test the limits [0, 0] when only one body is attached to the joint
// using dJointAttach(jId, 0, bId);
//
// The body should not move since their is no room between the two limits
//
TEST_FIXTURE(Fixture_dxJointSlider_Compare_Body_At_Zero_Axis_Along_X,
test_Limit_0_0_One_Body_on_right)
{
dBodyAddForce (bId2_12, 4, 0, 0);
dJointAttach(jId_12, bId1_12, bId2_12);
dJointSetSliderParam(jId_12, dParamLoStop, 0);
dJointSetSliderParam(jId_12, dParamHiStop, 0);
dJointAttach(fixed, bId1_12, 0);
dJointSetFixed(fixed);
dJointAttach(jId, 0, bId);
dJointSetSliderParam(jId, dParamLoStop, 0);
dJointSetSliderParam(jId, dParamHiStop, 0);
for (int i=0; i<500; ++i)
dWorldStep(wId, 1.0);
const dReal *pos2_12 = dBodyGetPosition(bId2_12);
const dReal *pos = dBodyGetPosition(bId);
CHECK_CLOSE (pos[0], pos2_12[0], 1e-4);
CHECK_CLOSE (pos[1], pos2_12[1], 1e-4);
CHECK_CLOSE (pos[2], pos2_12[2], 1e-4);
CHECK_CLOSE (pos[0], 0, 1e-4);
CHECK_CLOSE (pos[1], 0, 1e-4);
CHECK_CLOSE (pos[2], 0, 1e-4);
}
} // End of SUITE TestdxJointSlider