horror/thirdparty/ode-0.16.5/include/ode/threading_impl.h

293 lines
13 KiB
C
Raw Permalink Normal View History

2024-06-10 17:48:14 +08:00
/*************************************************************************
* *
* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
* All rights reserved. Email: russ@q12.org Web: www.q12.org *
* *
* Builtin ODE threading implementation header. *
* Copyright (C) 2011-2024 Oleh Derevenko. All rights reserved. *
* e-mail: odar@eleks.com (change all "a" to "e") *
* *
* This library is free software; you can redistribute it and/or *
* modify it under the terms of EITHER: *
* (1) The GNU Lesser General Public License as published by the Free *
* Software Foundation; either version 2.1 of the License, or (at *
* your option) any later version. The text of the GNU Lesser *
* General Public License is included with this library in the *
* file LICENSE.TXT. *
* (2) The BSD-style license that is included with this library in *
* the file LICENSE-BSD.TXT. *
* *
* This library is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
* *
*************************************************************************/
/*
* A threading implementation built into ODE for those who does not care to
* or can't implement an own one.
*/
#ifndef _ODE_THREADING_IMPL_H_
#define _ODE_THREADING_IMPL_H_
#include <ode/odeconfig.h>
#include <ode/threading.h>
#ifdef __cplusplus
extern "C" {
#endif
struct dxThreadingThreadPool;
typedef struct dxThreadingThreadPool *dThreadingThreadPoolID;
/**
* @brief Allocates built-in self-threaded threading implementation object.
*
* A self-threaded implementation is a type of implementation that performs
* processing of posted calls by means of caller thread itself. This type of
* implementation does not need thread pool to serve it.
*
* Note that since May 9th, 2017 (rev. #2066) the Self-Threaded implementation
* returns 0 rather than 1 as available thread count to distinguish from
* thread pools with just one thread in them.
*
* The processing is arranged in a way to prevent call stack depth growth
* as more and more nested calls are posted.
*
* Note that it is not necessary to create and assign a self-threaded
* implementation to a world, as there is a global one used by default
* if no implementation is explicitly assigned. You should only assign
* each world an individual threading implementation instance if simulations
* need to be run in parallel in multiple threads for the worlds.
*
* @returns ID of object allocated or NULL on failure
*
* @ingroup threading
* @see dThreadingAllocateMultiThreadedImplementation
* @see dThreadingFreeImplementation
*/
ODE_API dThreadingImplementationID dThreadingAllocateSelfThreadedImplementation();
/**
* @brief Allocates built-in multi-threaded threading implementation object.
*
* A multi-threaded implementation is a type of implementation that has to be
* served with a thread pool. The thread pool can be either the built-in ODE object
* or set of external threads that dedicate themselves to this purpose and stay
* in ODE until implementation releases them.
*
* @returns ID of object allocated or NULL on failure
*
* @ingroup threading
* @see dThreadingThreadPoolServeMultiThreadedImplementation
* @see dExternalThreadingServeMultiThreadedImplementation
* @see dThreadingFreeImplementation
*/
ODE_API dThreadingImplementationID dThreadingAllocateMultiThreadedImplementation();
/**
* @brief Retrieves the functions record of a built-in threading implementation.
*
* The implementation can be the one allocated by ODE (from @c dThreadingAllocateMultiThreadedImplementation).
* Do not use this function with self-made custom implementations -
* they should be bundled with their own set of functions.
*
* @param impl Threading implementation ID
* @returns Pointer to associated functions structure
*
* @ingroup threading
* @see dThreadingAllocateMultiThreadedImplementation
*/
ODE_API const dThreadingFunctionsInfo *dThreadingImplementationGetFunctions(dThreadingImplementationID impl);
/**
* @brief Requests a built-in implementation to release threads serving it.
*
* The function unblocks threads employed in implementation serving and lets them
* return to from where they originate. It's the responsibility of external code
* to make sure all the calls to ODE that might be dependent on given threading
* implementation object had already returned before this call is made. If threading
* implementation is still processing some posted calls while this function is
* invoked the behavior is implementation dependent.
*
* This call is to be used to request the threads to be released before waiting
* for them in host pool or before waiting for them to exit. Implementation object
* must not be destroyed before it is known that all the serving threads have already
* returned from it. If implementation needs to be reused after this function is called
* and all the threads have exited from it a call to @c dThreadingImplementationCleanupForRestart
* must be made to restore internal state of the object.
*
* If this function is called for self-threaded built-in threading implementation
* the call has no effect.
*
* @param impl Threading implementation ID
*
* @ingroup threading
* @see dThreadingAllocateMultiThreadedImplementation
* @see dThreadingImplementationCleanupForRestart
*/
ODE_API void dThreadingImplementationShutdownProcessing(dThreadingImplementationID impl);
/**
* @brief Restores built-in implementation's state to let it be reused after shutdown.
*
* If a multi-threaded built-in implementation needs to be reused after a call
* to @c dThreadingImplementationShutdownProcessing this call is to be made to
* restore object's internal state. After that the implementation can be served again.
*
* If this function is called for self-threaded built-in threading implementation
* the call has no effect.
*
* @param impl Threading implementation ID
*
* @ingroup threading
* @see dThreadingAllocateMultiThreadedImplementation
* @see dThreadingImplementationShutdownProcessing
*/
ODE_API void dThreadingImplementationCleanupForRestart(dThreadingImplementationID impl);
/**
* @brief Deletes an instance of built-in threading implementation.
*
* @warning A care must be taken to make sure the implementation is unassigned
* from all the objects it was assigned to and that there are no more threads
* serving it before attempting to call this function.
*
* @param impl Threading implementation ID
*
* @ingroup threading
* @see dThreadingAllocateMultiThreadedImplementation
*/
ODE_API void dThreadingFreeImplementation(dThreadingImplementationID impl);
typedef void (dThreadReadyToServeCallback)(void *callback_context);
/**
* @brief An entry point for external threads that would like to serve a built-in
* threading implementation object.
*
* A thread that calls this function remains blocked in ODE and serves implementation
* object @p impl until being released with @c dThreadingImplementationShutdownProcessing call.
* This function can be used to provide external threads instead of ODE's built-in
* thread pools.
*
* The optional callback @readiness_callback is called after the thread has reached
* and has registered within the implementation. The implementation should not
* be used until all dedicated threads register within it as otherwise it will not
* have accurate view of the execution resources available.
*
* @param impl Threading implementation ID
* @param readiness_callback Optional readiness callback to be called after thread enters the implementation
* @param callback_context A value to be passed as parameter to readiness callback
*
* @ingroup threading
* @see dThreadingAllocateMultiThreadedImplementation
* @see dThreadingImplementationShutdownProcessing
*/
ODE_API void dExternalThreadingServeMultiThreadedImplementation(dThreadingImplementationID impl,
dThreadReadyToServeCallback *readiness_callback/*=NULL*/, void *callback_context/*=NULL*/);
/**
* @brief Creates an instance of built-in thread pool object that can be used to serve
* multi-threaded threading implementations.
*
* The threads allocated inherit priority of caller thread. Their affinity is not
* explicitly adjusted and gets the value the system assigns by default. Threads
* have their stack memory fully committed immediately on start. On POSIX platforms
* threads are started with all the possible signals blocked. Threads execute
* calls to @c dAllocateODEDataForThread with @p ode_data_allocate_flags
* on initialization.
*
* On POSIX platforms this function must be called with signals masked
* or other measures must be taken to prevent reception of signals by calling thread
* for the duration of the call.
*
* @param thread_count Number of threads to start in pool
* @param stack_size Size of stack to be used for every thread or 0 for system default value
* @param ode_data_allocate_flags Flags to be passed to @c dAllocateODEDataForThread on behalf of each thread
* @returns ID of object allocated or NULL on failure
*
* @ingroup threading
* @see dThreadingAllocateMultiThreadedImplementation
* @see dThreadingImplementationShutdownProcessing
* @see dThreadingFreeThreadPool
*/
ODE_API dThreadingThreadPoolID dThreadingAllocateThreadPool(unsigned thread_count,
dsizeint stack_size, unsigned int ode_data_allocate_flags, void *reserved/*=NULL*/);
/**
* @brief Commands an instance of built-in thread pool to serve a built-in multi-threaded
* threading implementation.
*
* A pool can only serve one threading implementation at a time.
* Call @c dThreadingImplementationShutdownProcessing to release pool threads
* from implementation serving and make them idle. Pool threads must be released
* from any implementations before pool is attempted to be deleted.
*
* This function waits for threads to register within implementation before returning.
* So, after the function call exits the implementation can be used immediately.
*
* @param pool Thread pool ID to serve the implementation
* @param impl Implementation ID of implementation to be served
*
* @ingroup threading
* @see dThreadingAllocateThreadPool
* @see dThreadingAllocateMultiThreadedImplementation
* @see dThreadingImplementationShutdownProcessing
*/
ODE_API void dThreadingThreadPoolServeMultiThreadedImplementation(dThreadingThreadPoolID pool, dThreadingImplementationID impl);
/**
* @brief Waits until all pool threads are released from threading implementation
* they might be serving.
*
* The function can be used after a call to @c dThreadingImplementationShutdownProcessing
* to make sure all the threads have already been released by threading implementation
* and it can be deleted or it can be cleaned up for restart and served by another pool
* or this pool's threads can be used to serve another threading implementation.
*
* Note that is it not necessary to call this function before pool destruction
* since @c dThreadingFreeThreadPool performs similar wait operation implicitly on its own.
*
* It is OK to call this function even if pool was not serving any threading implementation
* in which case the call exits immediately with minimal delay.
*
* @param pool Thread pool ID to wait for
*
* @ingroup threading
* @see dThreadingAllocateThreadPool
* @see dThreadingImplementationShutdownProcessing
* @see dThreadingFreeThreadPool
*/
ODE_API void dThreadingThreadPoolWaitIdleState(dThreadingThreadPoolID pool);
/**
* @brief Deletes a built-in thread pool instance.
*
* The pool threads must be released from any implementations they might be serving
* before this function is called. Otherwise the call is going to block
* and wait until pool's threads return.
*
* @param pool Thread pool ID to delete
*
* @ingroup threading
* @see dThreadingAllocateThreadPool
* @see dThreadingImplementationShutdownProcessing
*/
ODE_API void dThreadingFreeThreadPool(dThreadingThreadPoolID pool);
#ifdef __cplusplus
}
#endif
#endif /* #ifndef _ODE_THREADING_IMPL_H_ */